

Opportunities of new concrete types for buildings and infrastructure?!

Mladena Lukovic

- New types of concrete
- Demands of society
- Promising applications

DUVRZAAM

Conclusions

Traditional concrete

Beside water, the most widely used material on Earth!

<u>WHY?</u>

- The cheapest and most readily available building material
- Ease of making any kind of shape
- Good durability

STORSEISUNDET BRIDGE, NORWAY

Seminar IABSE

"Recently" developed

Ultra High Performance Concrete (UHPC)

http://www.ultrabrug.nl/ultrabrug-nieuws/

- Very dense
- Watertight
- Extra strong

Ultra high strength

Normal strength

Strain hardening cementitious composite (SHCC, "bendable concrete")

- Very ductile
- Very small crack widths
- Damage resistant behaviour

Ductile

Geopolymer concrete

"green concrete"?!

- Reduce energy consumption
- Reduce CO₂ emission
- Use of industrial by-products

<u>TU Delft</u>

• Faculty of Civil Engineering and Geosciences

- Group of Concrete Structures
 - Existing concrete structures
 - Upscalling of innovative concretes
 - "SMART bridge" Albert Reitsema

BETON

BUIGZAAM

DUVRZAAM

CEMENT

МААТЗСНАРРІЈ

E?

STERK BETON

UHSB

 \bigcirc

- New types of concrete
- Demands of society
- Promising applications
- Conclusions

Benefits?!

Seminar IABSE

Economical? Esthetical? Sustainability? Less maintenance? Less hinder? High slenderness?

Lighter structure? Faster construction?

Challenges!

- Risk...
- Lacking experience...
- Difficulties in getting permissions

Develop guidelines, codes...

Historical overview of viaducts in the Netherlands

Soon we might face a huge replacement/repair task!

1960s

Demands

2020s

- Low construction time
- Freedom in space
- Keep existing traffic profile
- Minimize the additional ground work
- Keep existing foundations
- Minimize the weight of construction

Demands in the Netherlands

- Most of the existing bridges are 3 to 4 span bridges with a total span 20 60m.
- Replace with a single span bridge with slenderness as high as 60?

Can UHPC be the solution?

A case study replacement task A29/N309 with UHPC

Seminar IABSE

Three span plate bridge, total span 48 m

What is the achievable slenderness?

Three solutions proposed

A case study replacement task A29/N309 with UHPC

Pretensioned prestressing (current production process of box girders)

Combination of pretensioned and post-tensioned prestressing

Combination of pretensioned and post-tensioned prestressing with reduced anchor distances

Only high strength is not enough!

Maximum slenderness is 50!

Maximum slenderness is 45!

Maximum slenderness is 40!

Application of UHPC in Dutch infrastructure Already a few UHPC footbridges

Year	Name	Place	Company	
2011	Gooise brug	De Meern, Utrecht	Romein beton	
2012	Brug Hoekersingel	Rotterdam	FDN engineering	Gooise brug, 2011 Brug Hoekersingel, 2012 Zwaaikom, 2015
2014	Brugsysteem	Pijnacker	ipv Delft, Hi- Con, Pieters Bouwtechniek, Griekspoor	
2015	Brug Zwaaikom	Eindhoven	FDN engineering	Pijnacker, 2014
2016	Brugsysteem	Volmolen	Hi-Con	
2016	Catharinabrug	Leiden	Hi-Con	Catharinebrug 2016

Balconies

Poptahof, 2012/13

Rogier Nalta

Applications worldwide...

Longest UHPC bridge: Seonyu footbridge in Seoul

Seminar IABSE

UHPC Roof elements: Shawnessy station at Calgary, Canada

UHPC prestressed beams: Cattenom and Civaux nuclear power plants, France

aesthetics, lightness, high durability and fast construction...

In Malaysia more than 100 UHPC road bridges!

By 2020 around 5800 road bridges in Malaysia only?

This is almost 50% of existing bridges there now

Some structures cannot be replaced... Maastunnel

- Daily 60000 cars, 5000 cyclists, 1000 pedestrians
- Not only important connection
- Europe's first immersed tunnel
- Historical treasure to be preserved!

Constructed 1937 - 1942

© Aart Klein / nfa, coll. Nederlands fotomuseum

Opened in 1942

What if damage continues?

How clean is clean enough?

Damage in ventilation tubes, 2015

Performance of earlier repairs

Reduced crack widths and reduced corrosion rate Grubb et al. (2007), Jen and Ostertag (2016)

SHCC

Commercial mortar

In Japan used for repairing ASR induced damage

- In Switzerland repair and strengthening with UHPC applied since 2004
- Since then more than 50 retrofitting projects is realized

R-UHPFRC for strengthening

Chillon viaducts along Lake Geneva, Switzerland

Retrofitting with prefabricated UHPC shell elements

minimized "out-of-use" periods

Rehabilitated bridge pier, Switzerland

Retrofitting with prefabricated UHPC in the Netherlands

Replacement of the old wooden bridge decks with UHPC panels in Kaag Bridges

Renovation of Langetaambrug in Maasland

aesthetics, lightness, high durability, maintenance costs and sustainability...

Sustainability is becoming an increasingly important issue!

Investigate the structural capacity and durability of "green concrete"

Stay critical!

 "Professor Jones proves that the octopus is more intelligent than the cat, when tested under identical conditions"

Gemeente Rotterdam

Sustainability - all about the future!

- New types of concrete
- Demands of society
- Promising applications
- Conclusions

Conclusions

Huge replacement/repair task is waiting for us!

Due to the current demands of society we will probably not do it in the traditional way.

New materials might be solution

We have neither codes nor experience with these materials!

If we want to be ready, research has to start now!

THANK YOU FOR YOUR ATTENTION!

Combined pretensioned prestressing and post-tensioning in a prefabricated box girder

Seminar IABSE

- New types of concrete
- Demands of society
- Promising applications

Q

Conclusions

